Assalammualaikum WR. Wb
Saya Dyah Ayu Permatasari (12)
Kelas XI IPS 2
HOLLA!
Untuk hari ini saya akan mencoba untuk menjelaskan dan memberi contoh soal barisan dan deret aritmatika
Langsung saja kita ke pembahasannya, mohon maaf sebelumnya apabila ada kesalahan kesalahan yang saya jelaskan dalam blog ini.
Barisan dan deret geometri adalah salah satu materi yang dipelajari dalam Matematika SMA. Barisan geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan. Perbandingan atau rasio antara nilai suku-suku yang berdekatan selalu sama yaitu r. Nilai suku pertama dilambangkan dengan a.
Untuk mengetahui nilai suku ke-n dari suatu barisan geometri dapat dihitung dengan rumus berikut.
Deret geometri adalah penjumlahan suku-suku dari barisan geometri.
Penjumlahan dari suku-suku pertama sampai suku ke-n barisan geometri dapat dihitung dengan rumus berikut.
dengan syarat r < 1
atau
dengan syarat r > 1
Contoh Soal 1: Soal khusus
Selembar kertas dipotong menjadi dua bagian. Setiap bagian dipotong menjadi dua dan seterusnya. Jumlah potongan kertas setelah potongan kelima sama dengan …
Pembahasan:
Diketahui: a = 1
r = 2
Ditanya:
Jawab:
=32
Jadi, jumlah potongan kertas setelah potongan kelima adalah 32
Contoh Soal 2:
Pada sebuah deret geometri diketahui bahwa suku pertamanya adalah 3 dan suku ke-9 adalah 768. Suku ke-7 deret tersebut adalah …
Pembahasan :
Diketahui: a = 3
Ditanya:
Jawab:
Sebelum kita mencari nilai dari , kita akan mencari nilai r terlebih dahulu.
Ingat kembali bahwa sehingga
dapat ditulis menjadi
๐ehingga,
Jadi, suku ke-7 deret tersebut adalah 192.
Contoh Soal 3:
Diketahui suku ke-5 dari barisan geometri adalah 243, hasil bagi suku ke-9 dengan suku ke-6 adalah 27. Suku ke-2 dari barisan tersebut adalah …
Pembahasan:
Diketahui
Ditanya
Jawab:
Sebelum kita mencari nilai dari , kita akan mencari nilai a dan r terlebih dahulu.
Ingat kembali maka
Substitusikan r = 3 ke persamaan
sehingga
= 9
Jadi, suku ke-2 dari barisan tersebut adalah 9.
Contoh Soal 4:
Jumlah 6 suku pertama deret geometri 2 + 6 + 18 + … adalah …
Pembahasan:
Diketahui: a = 2
r = 3
ditanyakan
Jawab:
Jadi, jumlah 6 suku pertama deret geometri tersebut adalah 728.
Barisan dan deret tak hingga itu terbagi menjadi 2 jenis nih Squad, ada tak hingga divergen dan tak hingga konvergen. Nah keduanya memiliki perbedaan yang cukup penting. Yuk kita lihat pengertian dari ke dua jenis barisan tak hingga tersebut beserta perbedaannya.
Deret Geometri Tak Hingga Divergen
Deret geometri tak hingga divergen adalah suatu deret yang nilai bilangannya semakin membesar dan tidak bisa dihitung jumlahnya. Bisa kita lihat seperti di bawah ini,
1, 3, 9, 27, 81, …………… Kalau ditanya berapa sih jumlah seluruhnya? Jumlah seluruhnya tidak bisa dihitung karena nilainya semakin besar.
Deret Geometri Tak Hingga Konvergen
Berbeda dengan divergen, derek geometri tak hingga konvergen merupakan suatu deret di mana nilai bilangannya semakin mengecil dan dapat dihitung jumlahnya. Seperti di bawah ini,
Semakin lama nilainya semakin mengecil dan ujungnya akan mendekati angka 0. Hal ini membuat deret geometri tak hingga konvergen dapat dihitung jika ditanyakan jumlah seluruhnya.
Lalu bagaimana untuk menghitung jumlah seluruh dari tak hingga konvergen?
Sebelum masuk ke rumus, ada syarat terlebih dahulu jika kamu bertemu dengan deret geometri tak hingga konvergen, yaitu rasionya atau pengalinya harus antara -1 sampai 1 (-1 > r > 1) dan ini berlaku untuk negatif dan positif.
Contohnya begini jika kita kalikan dengan
Nah sekarang kita lihat ya rumus menghitung jumlah tak hingganya
Contoh Soal Geometri Tak Hingga
Jika maka jumlah deret geometri tak hingga
adalah?
(SPMB 2005)
Pembahasan 3:
- Diketahui bahwa:
atau
- Ditentukan ratio deretnya adalah:
- Maka jumlah deretnya dengan mensubstitusi
adalah:
Sumber :
https://www.zenius.net/blog/23355/contoh-soal-barisan-dan-deret-geometri
https://blog.ruangguru.com/barisan-dan-deret-geometri-rumus-un-sn-dan-deret-geometri-tak-hingga
Tidak ada komentar:
Posting Komentar