Minggu, 01 November 2020

Barisan dan Deret aritmatika


Assalammualaikum WR. Wb
Saya Dyah Ayu Permatasari (12)
Kelas XI IPS 2

HOLLA!
Untuk hari ini saya akan mencoba untuk menjelaskan dan memberi contoh soal barisan dan deret aritmatika
Langsung saja kita ke pembahasannya, mohon maaf sebelumnya apabila ada kesalahan kesalahan yang saya jelaskan dalam blog ini.


Pengertian Barisan aritmatika adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan. Selisih atau beda antara nilai suku-suku yang berdekatan selalu sama yaitu b. Nilai suku pertama dilambangkan dengan a.

Untuk mengetahui nilai suku ke-n dari suatu barisan arimatika dapat dihitung dengan rumus berikut.

Sedangkan untuk pengertian dari Deret aritmatika adalah penjumlahan suku-suku dari barisan aritmatika.

Penjumlahan dari suku-suku pertama sampai suku ke-n barisan aritmatika dapat dihitung dengan rumus berikut.

atau jika kita substitusikan  maka

Supaya tidak bingung lantaran menghadapi terlalu banyak rumus, coba perhatikan contoh latihan soal di bawah ini deh.

Contoh Soal 1:

Suku ke-40 dari barisan 7, 5, 3, 1, … adalah …

Pembahasan:

Diketahui: a = 7
b = 2
ditanya 

Jawab:


= 7 + 39 . (-2)
= 7 + (-78)
= – 71
Jadi, suku ke-40 barisan aritmatika tersebut adalah –71.

Contoh Soal 2:

Rumus suku ke-n dari barisan 5, –2, –9, –16, … adalah …

Pembahasan:

Diketahui: a = 5

b = 7

Ditanya: rumus suku ke-n barisan aritmatika tersebut = ?

Jawab:




Jadi, rumus suku ke-n barisan aritmatika tersebut adalah 

Contoh Soal 3:

Dalam suatu gedung pertunjukkan disusun kursi dengan baris paling depan terdiri dari 12 kursi, baris kedua berisi 14 kursi, baris ketiga berisi 16 kursi, dan seterusnya. Banyaknya kursi pada baris ke-20 adalah …

Pembahasan:

Diketahui: a = 12

b = 2

Ditanyakan 

Jawab:





Jadi, banyaknya kursi pada baris ke-20 adalah 50 kursi.

Contoh Soal 4:

Rumus jumlah n suku pertama deret bilangan 2 + 4 + 6 + … +  adalah …

Pembahasan:

Diketahui: a = 2

b = 2

Ditanya: rumus jumlah n suku pertama barisan aritmatika tersebut = ?

Jawab:






Jadi, rumus jumlah n suku pertama barisan aritmatika tersebut adalah 

Contoh Soal 5:

Diketahui deret aritmatika dengan suku ke-3 adalah 24 dan suku ke-6 adalah 36. Jumlah 15 suku pertama deret tersebut adalah …

Pembahasan:

Diketahui 

Ditanya: 

Jawab:

Sebelum kita mencari nilai dari , kita akan mencari nilai a dan b terlebih dahulu dengan cara eliminasi dan subtitusi dari persamaan  dan .

Sebelumnya mari ingat lagi bahwa  sehingga  dan  dapat ditulis menjadi 


 . . .(i)


 . . .(ii)

Eliminasi a menggunakan persamaan i dan ii.

a + 2b = 24
a + 5b = 36   –
-3b = -12

b = 4

Lalu, substitusikan nilai b = 4 ke salah satu persamaan (contoh persamaan i).

a + 2b = 24

a + 2 . 4 = 24

a + 8 = 24

        a= 24 – 8

        a = 16

Setelah mendapatkan nilai a dan b, baru kita bisa mencari nilai dari 





Jadi, jumlah 15 suku pertama deret tersebut adalah 660.


Sekian dari saya, terimakasih 

https://www.zenius.net/blog/23365/materi-soal-barisan-deret-aritmatika

Tidak ada komentar:

Posting Komentar