Minggu, 23 Agustus 2020

Menjawab Soal Cerita

 Assalammualaikum Wr Wb

Dyah Ayu Permatasari

XI IPS 2


Pengertian, Macam Macam, Operasi, dan Contoh Soal Matriks

 Assalammualaikum WR. Wb

Saya Dyah Ayu Permatasari
Kelas XI IPS 2

HOLLA!
Untuk hari ini saya akan mencoba untuk menjelaskan mengenai Matriks.
Langsung saja kita ke pembahasannya, mohon maaf sebelumnya apabila ada kesalahan kesalahan yang saya jelaskan dalam blog ini.

PENGERTIAN MATRIKS

    Matriks adalah kumpulan bilangan yang disusun secara baris atau kolom atau kedua-duanya dan di dalam suatu tanda kurung. Bilangan-bilangan yang membentuk suatu matriks disebut sebagai elemen-elemen matriks. Matriks digunakan untuk menyederhanakan penyampaian data, sehingga mudah untuk diolah.

MACAM MACAM MATRIKS


1. Matriks Baris dan Matriks Kolom

Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja. Contoh:

A = (1  4) atau B = (3  7  9) adalah matriks baris

\begin{pmatrix} 146 \\ 275 \\ 528 \end{pmatrix} atau D = \begin{pmatrix} p \\ q \end{pmatrix} adalah matriks kolom

2. Matriks Persegi

Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.

Contoh:

A = \begin{pmatrix} 34 & 56 & 41 \\ 45 & 36 & 37 \\ 51 & 32 & 46 \end{pmatrix} adalah matriks persegi berordo 3, atau

B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} adalah matriks persegi berordo 2

3. Matriks Segitiga Atas dan Segitiga Bawah

Matriks persegi A yang memiliki elemen matriks a_{ij} = 0 untuk i > j atau elemen-elemen matriks dibawah diagonal utama bernilai 0 disebut matriks segitiga atas. Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i < j atau elemen-elemen matriks diatas diagonal utama bernilai 0 disebut matriks segitiga bawah.

Contoh:

A = \begin{pmatrix} 1 & 6 & 4 \\ 0 & 3 & 7 \\ 0 & 0 & 4 \end{pmatrix} adalah matriks segitiga atas,

B = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 3 & 0 \\ 4 & 6 & 4 \end{pmatrix} adalah matriks segitiga bawah.

4. Matriks Diagonal

Matriks persegi A yang memiliki elemen matiks a_{ij} = 0 untuk i \neq j atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal.

Contoh:

A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} atau B = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}

5. Matriks Skalar

Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar.

Contoh:

A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} atau B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}.

6. Matriks Simetris

Matriks persegi A yang memiliki elemen matiks baris ke-I sama dengan elemen matriks kolom ke-j untuk i = j disebut simetris. Atau, dapat dikatakan elemen a_{ij} sama dengan elemen a_{ji}.

Contoh:

\begin{pmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \\ 4 & 5 & 7 \end{pmatrix}

Dapat dilihat bahwa elemen baris ke-1 sama dengan kolom ke-1, baris ke-2 sama dengan kolom ke-2, dan baris ke-3 sama dengan kolom ke-3.


OPERASI MATRIKS

>Penjumlahan Matriks

Operasi hitung matriks pada penjumlahan memiliki syarat yang harus dipenuhi agar dua buah matriks dapay dijumlahkan. Syarat dari dua buah matriks atau lebih dapat dijumlahkan jika memiliki nilai ordo yang sama. Artinya, semua matriks yang dijumlahkan harus memiliki jumlah baris dan kolom yang sama.

Matriks dengan jumlah baris 3 dan kolom 4 hanya bisa dijumlahkan dengan matriks dengan jumlah baris 3 dan kolom 4. Matriks dengan jumlah baris 3 dan kolom 4 tidak bisa dijumlahkan dengan matriks dengan jumlah baris 4 dan kolom 3. Kesimpulannya, jumlah baris dan kolom antar dua matriks yang akan dijumlahkan harus sama.

Operasi hitung penjumlahan matriks memenuhi sifat komutatif, asosiatif, memiliki matriks identitas matriks nol, dan memiliki lawan matriks. Lawan matriks A adalah matriks -A, di mana elemen-elemen matriks -A merupakan lawan dari elemen-elemen matriks A. Secara ringkas, sifat operasi penjumlahan matriks dapat dilihat pada gambar di bawah.

Sifat-sifat operasi penjumlahan matriks

 

Selanjutnya, kita akan mempelajari cara melakukan operasi hitung penjumlahan dua buah matriks. Penjelasan akan diberikan dalam bentuk contoh soal secara umum.

Contoh cara melakukan operasi penjumlahan pada matriks:

Penjumlahan Matriks
 

Bagaimana penjelasan mengenai penjumlahan matriks, mudah bukan? Sekarang kita akan masuk pada pembahasan selanjutnya yaitu operasi hitung pengurangan matriks. Simak uraian di bawah.

 

>Pengurangan Matriks

Seperti halnya operasi hitung penjumlahan matriks, syarat agar dapat mengurangkan elemen-elemen antar matriks adalah matriks harus memiliki nilai ordo yang sama. Cara melakukan operasi pengurangan pada matriks dapat dilihat seperti cara di bawah.

Pengurangan Matriks

Cara melakukan operasi pengurangan dua matriks tidak jauh berbeda dengan penjumlahan matriks. Untuk lebih jelasnya, perhatikan contoh soal pengurangan matriks secara umum yang akan diberikan di bawah.

Contoh cara melakukan operasi pengurangan pada matriks:

 
Pengurangan Dua Matriks


>Perkalian Matriks

Pembahasan operasi hitung matriks selanjutnya yang akan dibahas adalah perkalian matriks. Perkalian matriks yang akan dibahas di bawah adalah perkalian matriks dengan skalar dan perkalian matriks dengan matriks. Selengkapnya simak operasi hitung perkalian matriks di bawah.

Perkalian Matriks dengan Skalar

Cara melakukan operasi skalar pada matriks adalah dengan mengalikan semua elemen-elemen matriks dengan skalarnya. Jika k adalah suatu konstanta dan A adalah matriks, maka cara melakukan operasi perkalian skalar dapat dilihat melalui cara di bawah.

Perkalian Matriks dengan Skalar

 

Cara melakukan perkalian matriks dengan skalar cukup mudah dilakukan. Contoh soal cara melakukan perkalian matriks yang akan diberikan di bawah akan menambah pemahaman sobat idschool.

Contoh cara melakukan operasi perkalian skalar pada matriks:

Diketahui konstanta k = 2 dan sebuah matriks A dengan persamaan seperti di bawah.

  \[ \textrm{A} \; = \begin{bmatrix} 1 & 2 \\ 3 & 4  \\ 5 & 6  \\ 7 & 8 \end{bmatrix}\]

Maka hasil perkalian konstanta k dengan matriks A adalah sebagai berikut.

  \[ k\textrm{A} \; = 2 \begin{bmatrix} 1 & 2 \\ 3 & 4  \\ 5 & 6  \\ 7 & 8 \end{bmatrix}\]

  \[ k\textrm{A} \; = \begin{bmatrix} 2 & 4 \\ 6 & 8  \\ 10 & 12  \\ 14 & 16 \end{bmatrix}\]

 

Uraian selanjutnya adalah cara melakukan perkalian dua matriks.

 
>Operasi Perkalian Dua Matriks

Seperti yang telah disinggung sebelumnya, syarat dua buah matriks dapat dikalikan jika memiliki jumlah kolom matriks pertama yang sama dengan jumlah baris matriks ke dua. Ordo matriks hasil perkalian dua matriks adalah jumlah baris pertama dikali jumlah kolom ke dua.

Matriks A memiliki jumlah kolom sebanyak m dan jumlah baris r, matriks B memiliki jumlah kolom sebanyak r dan jumlah baris m, hasil perkalian matriks A dan B adalah matriks C dengan jumlah kolom m dan jumlah baris n.

 
Perkalian Matriks

 

Sebelum mengulas cara melakukan operasi perkalian dua buah matriks, sebaiknya kita perlajari dahulu sidat-sifat operasi perkalian dua matriks. Sifat-sifat operasi perkalian matriks meliputi sifat asosiatif, distributif, dan memiliki matriks identitas I. Sifat-sifat operasi perkalian matriks dapat dilihat pada gambar di bawah.

Operasi Hitung pada Matriks dan Sifat-sifatnya

Sifat-sifat matriks di atas dapat digunakan untuk memudahkan perhitungan dalam melakukan operasi hitung matriks.

Sekarang, pembahasan kita masuk pada perkalian dua matriks. Untuk pembahasan pertama kita akan mempelajari cara melakukan perkalian matriks dengan ukuran 2 \times 2 dan matriks dengan ukuran 2 \times 1.

 

Proses cara melakukan operasi perkalian matriksdengan ukuran 2 \times 2 dan matriks dengan ukuran 2 \times 1 dapat disimak pada pembahasan di bawah.

Diketahui:

  \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

  \[ B = \begin{bmatrix} x & y \end{bmatrix} \]

 
Perkalian dua matriks A \times B dapat diperoleh dengan cara di bawah.
 
Perkalian Matriks
 

Selanjutnya adalah perkalian dua matriks. Kedua matriks yang akan dioperasikan sama-sama berukuran 2 \times 2. Selengkapnya, simak pembahasan di bawah.

Diketahui:

  \[ P = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

  \[ Q = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \]

 
Maka perkalian dua matriks P \cdot Q dapat diperoleh dengan cara di bawah.
 

perkalian matriks

 

Untuk lebih jelasnya akan ditunjukkan dari contoh soal operasi perkalian dua matriks seperti yang ditunjukkan di bawah.

Diketahui:

  \[ P = \begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix} \]

  \[ Q = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \]

Maka:

  \[ P \cdot Q = \begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}  \]

  \[ P \cdot Q =  \begin{bmatrix} 2 \cdot 1 + 3 \cdot 4  &  2 \cdot 3 + 3 \cdot 2  \\ 5 \cdot 1 + 2 \cdot 4 & 5 \cdot 3 + 2 \cdot 2 \end{bmatrix} \]

  \[ P \cdot Q =  \begin{bmatrix} 2 + 12  &  6 + 6  \\ 5 + 8 & 15 + 4 \end{bmatrix} \]

  \[ P \cdot Q = \begin{bmatrix} 14 & 12 \\ 13 & 19 \end{bmatrix} \]

CONTOH SOAL MATRIKS

1. Suatu perkalian matriks \begin{pmatrix} 1 & x \end{pmatrix} \begin{pmatrix} 6 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} menghasilkan matriks nol. Tentukan nilai x yang memenuhui persamaan tersebut

Pembahasan:

\begin{pmatrix} 1 & x \end{pmatrix} \begin{pmatrix} 6 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = 0

\begin{pmatrix}6 - 3x & -2 + x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = 0

6 - 3x + (-2 + x)x = 0

x^2 - 2x - 3x + 6 = 0

x^2 - 5x + 6 = 0

(x-2)(x-3)

Maka nilai x yang memenuhi adalah x= 2 dan x2 = 3.

2. Jika matriks \begin{pmatrix} 9 & 7 \\ 5 & 4 \end{pmatrix} dan \begin{pmatrix} x-1 & x-12 \\ -x & x+4 \end{pmatrix} saling invers, tentukan nilai x!

Pembahasan:

Diketahui bahwa kedua matriks tersebut saling invers, maka berlaku syarat AA-1 = A-1A = I.

Sehingga:

\begin{pmatrix} 9 & 7 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x-1 & x-12 \\ -x & x+4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

\begin{pmatrix} 9(x-1) - 7x & 9(x-12) + 7(x+4) \\ 5(x-1) - 4x & 5(x-12) + 4(x+4) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Sehingga pada elemen baris ke-1 kolom ke-1 memiliki persamaan:

9(x – 1) – 7x = 1

9x – 9 – 7x = 1

2x = 10

x = 5

3. Jika diketahui persamaan metrik !

Pembahasan

Karena kedua matriks sama, maka elemen-elemen yang seletak akan sama pula, sehingga berlaku:

2x + 1 = 3
2x = 2
x = 1
y + 12 = 15
y = 3
x + y = 1 + 3 = 4

4. Jika determinan nilai matriks A adalah 4 kali determinan nilai matriks B, maka nilai x adalah…

Pembahasan 

det A = 4 det B 
x (16 x ) – (-16) = 4 (108 – (-152)) 
x (4 2x ) + 16 = 4 (260) 
3x = 4 (260) – 16 
3x = 4 (260) – 4 (4) 
3x = 4 (260 – 4) 
3x = 4 (256) 
3x = 4. 4 4
3x = 4 5
3x = 5 
x = 5/3


5.

 

Selesai sudah penjelasan yang dapat saya berikan, mohon maaf apabila ada kesalahan kesalahan dalam memberikan penjelasan, sekian terimakasih

Wassalammualaikum, Wr.Wb


Sumber :

https://rumusbilangan.com/contoh-soal-matriks-dan-jawabannya-kelas-11/